Notch Transmembrane Domain: Secondary Structure and Topology

نویسندگان

  • Catherine L. Deatherage
  • Zhenwei Lu
  • Ji-Hun Kim
  • Charles R. Sanders
چکیده

The Notch signaling pathway is critical in development, neuronal maintenance, and hematopoiesis. An obligate step in the activation of this pathway is cleavage of its transmembrane (TM) domain by γ-secretase. While the soluble domains have been extensively studied, little has been done to characterize its TM and flanking juxtamembrane (JM) segments. Here, we present the results of nuclear magnetic resonance (NMR) studies of the human Notch1 TM/JM domain. The TM domain is largely α-helical. While the flanking JM segments do not adopt regular secondary structure, they interact with the membrane surface, suggesting membrane interactions may play a role in modulating its cleavage by γ-secretase and subsequent NOTCH signaling function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins.

Presenilins have been implicated in the genesis of Alzheimer's disease and in facilitating LIN-12/Notch activity during development. All presenilins have multiple hydrophobic regions that could theoretically span a membrane, and a description of the membrane topology is a crucial step toward deducing the mechanism of presenilin function. Previously, we proposed an eight-transmembrane-domain mod...

متن کامل

Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila.

The cleavage model for signal transduction by receptors of the LIN-12/Notch family posits that ligand binding leads to cleavage within the transmembrane domain, so that the intracellular domain is released to translocate to the nucleus and activate target gene expression. The familial Alzheimer's disease-associated protein Presenilin is required for LIN-12/Notch signaling, and several lines of ...

متن کامل

The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder.

Cell-fate decisions in metazoans are frequently guided by the Notch signalling pathway. Notch signalling is orchestrated by a type-1 transmembrane protein, which, upon interacting with extracellular ligands, is proteolytically cleaved to liberate a large intracellular domain [NICD (Notch intracellular domain)]. NICD enters the nucleus where it binds the transcription factor CSL (CBF1/suppressor...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS

This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...

متن کامل

A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence.

We designed a web-based program, WHAT, which uses a sliding window to determine and plot the hydropathy, amphipathicity, secondary structure and transmembrane topology along the length of any protein sequence. This method is based on programs designed by us for hydropathy and amphipathicity but on JNET and MEMSAT for secondary structure and transmembrane topology predictions, respectively. It h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015